Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(17): 11694-11705, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38605900

RESUMEN

Several studies have been performed on the immunomodulatory effects of yeast ß-(1,3) glucan, but there is no proper evaluation of the thermal and immunomodulating properties of zymosan (ZM). Thermogravimetry analysis indicated a 54% weight loss of ZM at 270 °C. Circular dichroism showed absorption peaks in the region of 250 to 400 nm, suggesting a helical coil ß-sheet configuration. XRD showed a broad peak at 2θ of 20.38°, indicating the crystalline nature, and the size was found to be 23 nm. ZM is biocompatible and showed no toxicity against L929 and RAW 264.7 cell lines (cell viability > 90%). Immunomodulatory studies with PCR showed upregulation of M1 genes in human differentiated THP-1 macrophage cell lines, which were responsible for antitumor properties. The uptake of ZM particles inside the differentiated THP-1 macrophages and Raw 264.7 cells was confirmed (Video clip). ZM particle uptake via Dectin-1 was identified by competitive receptor blocking. Seaweed derived carrageenan/ZM/agarose hydrogel was successfully prepared (@5 : 5 wt%) and was seen to support the growth of L929 cells (1 × 105 cells per mL) and have a higher swelling (≈250-280%). This study indicates that ZM-based hydrogel could be a potential drug carrier (Rifampicin and Levofloxacin) for targeting tumour-associated macrophages (M2).

2.
J Biomed Mater Res A ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38560769

RESUMEN

The Fe-Mn alloys are potential candidates for biodegradable implant applications. However, the very low degradation rates of Fe-Mn alloys in the physiological environment are a major disadvantage. In this study, the degradation rate of a Fe-20Mn alloy was improved using the groove pressing (GP) technique. Hot rolled sheets of 2 mm thickness were subjected to GP operation at 1000°C. Uniform fine-grained (UFG) Fe-Mn alloys were obtained using the GP technique. The influence of GP on the microstructure, mechanical properties, degradation behavior in simulated body fluid (SBF), surface wettability, biomineralization, and cytocompatibility was investigated and compared to the annealed (A Fe-Mn) and rolled (R Fe-Mn) sample. The groove-pressed Fe-Mn (G Fe-Mn) alloy had a grain size of approximately 40 ± 16 µm whereas the A Fe-Mn and R Fe-Mn samples had grain sizes of 303 ± 81 and 117 ± 14.5 µm, respectively. Enhanced strength and elongation were also observed with the G Fe-Mn sample. The potentiodynamic polarization test showed the highest Icorr, lowest polarization resistance, and lowest Ecorr for the G Fe-Mn sample among all other samples indicating its higher degradation rate. The weight loss data from immersion tests also shows that the percentage of weight loss increases with time indicating the accelerated degradation behavior of the sample. The static immersion test showed an enhancement in weight loss of 0.46 ± 0.02% and 1.02 ± 0.05% for R Fe-Mn and G Fe-Mn samples, respectively, than A Fe-Mn sample (0.31 ± 0.03%) after 56 days in immersion in SBF. The greater biomineralization tendency in UFG materials is confirmed by the G Fe-Mn sample's stronger hydroxyapatite deposition. When compared to the A Fe-Mn and R Fe-Mn samples, the G Fe-Mn sample has a better wettability, which promotes higher cell adhesion and vitality, showing higher biocompatibility. This study demonstrates that Fe-20Mn processed by GP has potential applications for the manufacture of biodegradable metallic implants.

3.
J Biomed Mater Res B Appl Biomater ; 112(3): e35397, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456309

RESUMEN

In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3-7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5-7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50-400 µm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5-13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.


Asunto(s)
Sustitutos de Huesos , Quitosano , Apatitas/farmacología , Apatitas/química , Sustitutos de Huesos/química , Cementos para Huesos/farmacología , Cementos para Huesos/química , Fosfatos de Calcio/química , Durapatita , Quitosano/farmacología , Quitosano/química , Difracción de Rayos X , Fuerza Compresiva
4.
J Biomed Mater Res B Appl Biomater ; 111(2): 416-428, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36095055

RESUMEN

Calcium deficient hydroxyapatite (CDHA)-based apatite forming bone cements are well known for their bioactivity and bioresorbability. The formulation of CDHA-based cements with improved macroporosity, injectability, and resorbability has been investigated. The solid phase consists of nanocrystalline hydroxyapatite (HA) and tricalcium phosphate (ß-TCP). The liquid phase is diluted acetic acid with disodium hydrogen phosphate as binding accelerator along with gelatin and chitosan to improve the injectability. A porogen agent either mannitol (as solid porogen) or polysorbate (as liquid porogen) is also used to improve the porosity. All combined in fine-tuned composition results in optimal bone cements. The cement sets within the clinically preferred setting time (≤20 min) and injectability (>70%) and also stable at physiological pH (i.e., ~7.3-7.4). The XRD and FT-IR analysis confirmed the formation of CDHA phase on day 7 when the after-set cement immersed under phosphate buffer solution (PBS) at physiological conditions. The cements were found to have acceptable compressive strength for trabecular bone substitute. The cements were macroporous in nature with average pore size between 50 and 150 µm and were interconnected as confirmed by SEM, micro-CT and MIP analysis. The prepared cements are degradable up to 22% and 19% in simulated body fluid and PBS respectively within 10 weeks of immersion at physiological conditions. The cements exhibit higher viability (%) (>110%) with L929 and MG63 cells compared to the control after 3 days of incubation. They also show increased proliferation, well spreading and extended filopodia with MG63 cells. Overall, the developed apatite forming bone cements seems to be suitable for low or non-load bearing orthopedic applications.


Asunto(s)
Cementos para Huesos , Sustitutos de Huesos , Cementos para Huesos/farmacología , Cementos para Huesos/química , Apatitas/química , Espectroscopía Infrarroja por Transformada de Fourier , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/química , Sustitutos de Huesos/química , Fuerza Compresiva , Durapatita , Cementos de Ionómero Vítreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...